
Pipeline Documentation
Release 1.6.12

Timothée Peignier

Jul 22, 2018

Contents

1 Table Of Contents 3
1.1 Installation . 3
1.2 Configuration . 4
1.3 Usage . 9
1.4 Compressors . 12
1.5 Compilers . 16
1.6 Javascript Templates . 19
1.7 Storages . 22
1.8 Signals . 24
1.9 Sites using Pipeline . 24

2 Indices and tables 27

i

ii

Pipeline Documentation, Release 1.6.12

Pipeline is an asset packaging library for Django, providing both CSS and JavaScript concatenation and compression,
built-in JavaScript template support, and optional data-URI image and font embedding.

You can report bugs and discuss features on the issues page.

You can discuss features or ask questions on the IRC channel on freenode : #django-pipeline

Contents 1

https://github.com/jazzband/django-pipeline/issues
irc://irc.freenode.net/django-pipeline

Pipeline Documentation, Release 1.6.12

2 Contents

CHAPTER 1

Table Of Contents

1.1 Installation

1. Either check out Pipeline from GitHub or to pull a release off PyPI

pip install django-pipeline

2. Add ‘pipeline’ to your INSTALLED_APPS

INSTALLED_APPS = (
'pipeline',

)

3. Use a pipeline storage for STATICFILES_STORAGE

STATICFILES_STORAGE = 'pipeline.storage.PipelineCachedStorage'

4. Add the PipelineFinder to STATICFILES_FINDERS

STATICFILES_FINDERS = (
'django.contrib.staticfiles.finders.FileSystemFinder',
'django.contrib.staticfiles.finders.AppDirectoriesFinder',
'pipeline.finders.PipelineFinder',

)

Note: You need to use Django>=1.7 to be able to use this version of pipeline.

1.1.1 Upgrading from 1.3

To upgrade from pipeline 1.3, you will need to follow these steps:

1. Update templates to use the new syntax

3

http://github.com/jazzband/django-pipeline
http://pypi.python.org/pypi/django-pipeline

Pipeline Documentation, Release 1.6.12

{# pipeline<1.4 #}
{% load compressed %}
{% compressed_js 'group' %}
{% compressed_css 'group' %}

{# pipeline>=1.4 #}
{% load pipeline %}
{% javascript 'group' %}
{% stylesheet 'group' %}

2. Add the PipelineFinder to STATICFILES_FINDERS

STATICFILES_FINDERS = (
'django.contrib.staticfiles.finders.FileSystemFinder',
'django.contrib.staticfiles.finders.AppDirectoriesFinder',
'pipeline.finders.PipelineFinder',

)

1.1.2 Upgrading from 1.5

To upgrade from pipeline 1.5, you will need update all your PIPELINE_* settings and move them under the new
PIPELINE setting. See Configuration.

1.1.3 Recommendations

Pipeline’s default CSS and JS compressor is Yuglify. Yuglify wraps UglifyJS and cssmin, applying the default YUI
configurations to them. It can be downloaded from: https://github.com/yui/yuglify/.

If you do not install yuglify, make sure to disable the compressor in your settings.

1.2 Configuration

Configuration and list of available settings for Pipeline. Pipeline settings are namespaced in a PIPELINE dictionary
in your project settings, e.g.:

PIPELINE = {
'PIPELINE_ENABLED': True,
'JAVASCRIPT': {

'stats': {
'source_filenames': (
'js/jquery.js',
'js/d3.js',
'js/collections/*.js',
'js/application.js',

),
'output_filename': 'js/stats.js',

}
}

}

4 Chapter 1. Table Of Contents

https://github.com/yui/yuglify/

Pipeline Documentation, Release 1.6.12

1.2.1 Specifying files

You specify groups of files to be compressed in your settings. You can use glob syntax to select multiples files.

The basic syntax for specifying CSS/JavaScript groups files is

PIPELINE = {
'STYLESHEETS': {

'colors': {
'source_filenames': (
'css/core.css',
'css/colors/*.css',
'css/layers.css'

),
'output_filename': 'css/colors.css',
'extra_context': {

'media': 'screen,projection',
},

},
},
'JAVASCRIPT': {

'stats': {
'source_filenames': (
'js/jquery.js',
'js/d3.js',
'js/collections/*.js',
'js/application.js',

),
'output_filename': 'js/stats.js',

}
}

}

Group options

source_filenames

Required

Is a tuple with the source files to be compressed. The files are concatenated in the order specified in the tuple.

output_filename

Required

Is the filename of the (to be) compressed file.

variant

Optional

Is the variant you want to apply to your CSS. This allow you to embed images and fonts in CSS with data-URI.
Allowed values are : None and datauri.

Defaults to None.

1.2. Configuration 5

Pipeline Documentation, Release 1.6.12

template_name

Optional

Name of the template used to render <script> for js package or <link> for css package.

Defaults to None.

extra_context

Optional

Is a dictionary of values to add to the template context, when generating the HTML for the HTML-tags with the
templatetags.

For CSS, if you do not specify extra_context/media, the default media in the <link> output will be
media="all".

For JS, the default templates support the async and defer tag attributes which are controlled via
extra_context:

'extra_context': {
'async': True,

},

manifest

Optional

Indicate if you want this group to appear in your cache manifest.

Defaults to True.

Other settings

PIPELINE_ENABLED

True if assets should be compressed, False if not.

Defaults to not settings.DEBUG.

PIPELINE_COLLECTOR_ENABLED

True if assets should be collected in develop , False if not.

Defaults to True

Note: This only applies when PIPELINE_ENABLED is False.

6 Chapter 1. Table Of Contents

Pipeline Documentation, Release 1.6.12

SHOW_ERRORS_INLINE

True if errors compiling CSS/JavaScript files should be shown inline at the top of the browser window, or False if
they should trigger exceptions (the older behavior).

This only applies when compiling through the {% stylesheet %} or {% javascript %} template tags. It
won’t impact collectstatic.

Defaults to settings.DEBUG.

CSS_COMPRESSOR

Compressor class to be applied to CSS files.

If empty or None, CSS files won’t be compressed.

Defaults to 'pipeline.compressors.yuglify.YuglifyCompressor'.

JS_COMPRESSOR

Compressor class to be applied to JavaScript files.

If empty or None, JavaScript files won’t be compressed.

Defaults to 'pipeline.compressors.yuglify.YuglifyCompressor'

Note: Please note that in order to use Yuglify compressor, you need to install Yuglify (see Installation for more
details).

TEMPLATE_NAMESPACE

Object name where all of your compiled templates will be added, from within your browser. To access them with your
own JavaScript namespace, change it to the object of your choice.

Defaults to "window.JST"

TEMPLATE_EXT

The extension for which Pipeline will consider the file as a Javascript template. To use a different extension, like
.mustache, set this settings to .mustache.

Defaults to ".jst"

TEMPLATE_FUNC

JavaScript function that compiles your JavaScript templates. Pipeline doesn’t bundle a javascript template library, but
the default setting is to use the underscore template function.

Defaults to "_.template"

1.2. Configuration 7

http://documentcloud.github.com/underscore/

Pipeline Documentation, Release 1.6.12

TEMPLATE_SEPARATOR

Character chain used by Pipeline as replacement for directory separator.

Defaults to "_"

MIMETYPES

Tuple that match file extension with their corresponding mimetypes.

Defaults to

(
(b'text/coffeescript', '.coffee'),
(b'text/less', '.less'),
(b'text/javascript', '.js'),
(b'text/x-sass', '.sass'),
(b'text/x-scss', '.scss')

)

Warning: If you support Internet Explorer version 8 and below, you should declare javascript files as text/
javascript.

1.2.2 Embedding fonts and images

You can embed fonts and images directly in your compiled css, using Data-URI in modern browsers.

To do so, setup variant group options to the method you wish to use :

'STYLESHEETS' = {
'master': {

'source_filenames': (
'css/core.css',
'css/button/*.css',

),
'output_filename': 'css/master.css',
'variant': 'datauri',

},
}

Images and fonts are embedded following these rules :

• If asset is under 32 kilobytes to avoid rendering delay or not rendering at all in Internet Explorer 8.

• If asset path contains a directory named “embed”.

Overriding embedding settings

You can override these rules using the following settings:

8 Chapter 1. Table Of Contents

Pipeline Documentation, Release 1.6.12

EMBED_MAX_IMAGE_SIZE

Setting that controls the maximum image size (in bytes) to embed in CSS using Data-URIs. Internet Explorer 8 has
issues with assets over 32 kilobytes.

Defaults to 32700

EMBED_PATH

Setting the directory that an asset needs to be in so that it is embedded

Defaults to r'[/]?embed/'

1.2.3 Rewriting CSS urls

If the source CSS contains relative URLs (i.e. relative to current file), those URLs will be converted to full relative
path.

1.2.4 Wrapped javascript output

All javascript output is wrapped in an anonymous function :

(function(){
//JS output...

})();

This safety wrapper, make it difficult to pollute the global namespace by accident and improve performance.

You can override this behavior by setting DISABLE_WRAPPER to True. If you want to use your own wrapper,
change the JS_WRAPPER setting. For example:

JS_WRAPPER = "(function(){stuff();%s})();"

1.3 Usage

Describes how to use Pipeline when it is installed and configured.

1.3.1 Templatetags

Pipeline includes two template tags: stylesheet and javascript, in a template library called pipeline.

They are used to output the <link> and <script>-tags for the specified CSS/JavaScript-groups (as specified in the
settings). The first argument must be the name of the CSS/JavaScript group.

When settings.DEBUG is set to True the use of these template tags will result in a separate tag for each re-
source in a given group (i.e., the combined, compressed files will not be used), in order to make local debugging easy.
When settings.DEBUG is set to False the opposite is true. You can override the default behavior by setting
settings.PIPELINE['PIPELINE_ENABLED'] manually. When set to True or False this enables or dis-
ables, respectively, the usage of the combined, compressed file for each resource group. This can be useful, if you
encounter errors in your compressed code that don’t occur in your uncompressed code and you want to debug them
locally.

1.3. Usage 9

Pipeline Documentation, Release 1.6.12

If you need to change the output of the HTML-tags generated from the templatetags, this can be done by overriding
the templates pipeline/css.html and pipeline/js.html.

Example

If you have specified the CSS-groups “colors” and “stats” and a JavaScript-group with the name “scripts”, you would
use the following code to output them all

{% load pipeline %}
{% stylesheet 'colors' %}
{% stylesheet 'stats' %}
{% javascript 'scripts' %}

1.3.2 Form Media

Django forms and widgets can specify individual CSS or JavaScript files to include on a page by defining a Form.
Media class with css and js attributes.

Pipeline builds upon this by allowing packages to be listed in css_packages and js_packages. This is equiva-
lent to manually including these packages in a page’s template using the template tags.

To use these, just have your form or widget’s Media class inherit from pipeline.forms.
PipelineFormMedia and define css_packages and js_packages. You can also continue to reference
individual CSS/JavaScript files using the original css/js attributes, if needed.

Note that unlike the template tags, you cannot customize the HTML for referencing these files. The pipeline/
css.html and pipeline/js.html files will not be used. Django takes care of generating the HTML for form
and widget media.

Example

from django import forms
from pipeline.forms import PipelineFormMedia

class MyForm(forms.Form):
...

class Media(PipelineFormMedia):
css_packages = {

'all': ('my-styles',)
}
js_packages = ('my-scripts',)
js = ('https://cdn.example.com/some-script.js',)

1.3.3 Collect static

Pipeline integrates with staticfiles, you just need to setup STATICFILES_STORAGE to

STATICFILES_STORAGE = 'pipeline.storage.PipelineStorage'

Then when you run collectstatic command, your CSS and your javascripts will be compressed at the same time

10 Chapter 1. Table Of Contents

Pipeline Documentation, Release 1.6.12

$ python manage.py collectstatic

Cache-busting

Pipeline 1.2+ no longer provides its own cache-busting URL support (using e.g. the PIPELINE_VERSIONING
setting) but uses Django’s built-in staticfiles support for this. To set up cache-busting in conjunction with
collectstatic as above, use

STATICFILES_STORAGE = 'pipeline.storage.PipelineCachedStorage'

This will handle cache-busting just as staticfiles’s built-in CachedStaticFilesStorage does.

1.3.4 Middleware

To enable HTML compression add pipeline.middleware.MinifyHTMLMiddleware, to your
MIDDLEWARE_CLASSES settings.

Ensure that it comes after any middleware which modifies your HTML, like GZipMiddleware

MIDDLEWARE_CLASSES = (
'django.middleware.gzip.GZipMiddleware',
'pipeline.middleware.MinifyHTMLMiddleware',

)

1.3.5 Cache manifest

Pipeline provide a way to add your javascripts and stylesheets files to a cache-manifest via Manifesto.

To do so, you just need to add manifesto app to your INSTALLED_APPS.

1.3.6 Jinja

Pipeline also includes Jinja2 support and is used almost identically to the Django Template tags implementation. You
just need to pass pipeline.jinja2.PipelineExtension to your Jinja2 environment:

{
'BACKEND': 'django.template.backends.jinja2.Jinja2',
'DIRS': [],
'APP_DIRS': True,
'OPTIONS': {

'environment': 'myproject.jinja2.environment',
'extensions': ['pipeline.jinja2.PipelineExtension']

}
}

Templates

Unlike the Django template tag implementation the Jinja2 implementation uses different templates, so if you wish to
override them please override pipeline/css.jinja and pipeline/js.jinja.

1.3. Usage 11

https://manifesto.readthedocs.io/

Pipeline Documentation, Release 1.6.12

1.4 Compressors

1.4.1 Yuglify compressor

The Yuglify compressor uses yuglify for compressing javascript and stylesheets.

To use it for your stylesheets add this to your PIPELINE['CSS_COMPRESSOR']

PIPELINE['CSS_COMPRESSOR'] = 'pipeline.compressors.yuglify.YuglifyCompressor'

To use it for your javascripts add this to your PIPELINE['JS_COMPRESSOR']

PIPELINE['JS_COMPRESSOR'] = 'pipeline.compressors.yuglify.YuglifyCompressor'

YUGLIFY_BINARY

Command line to execute for the Yuglify program. You will most likely change this to the location of
yuglify on your system.

Defaults to '/usr/bin/env yuglify'.

YUGLIFY_CSS_ARGUMENTS

Additional arguments to use when compressing CSS.

Defaults to '--terminal'.

YUGLIFY_JS_ARGUMENTS

Additional arguments to use when compressing JavaScript.

Defaults to '--terminal'.

1.4.2 YUI Compressor compressor

The YUI compressor uses yui-compressor for compressing javascript and stylesheets.

To use it for your stylesheets add this to your PIPELINE['CSS_COMPRESSOR']

PIPELINE['CSS_COMPRESSOR'] = 'pipeline.compressors.yui.YUICompressor'

To use it for your javascripts add this to your PIPELINE['JS_COMPRESSOR']

PIPELINE['JS_COMPRESSOR'] = 'pipeline.compressors.yui.YUICompressor'

YUI_BINARY

Command line to execute for the YUI program. You will most likely change this to the location of yui-
compressor on your system.

Defaults to '/usr/bin/env yuicompressor'.

12 Chapter 1. Table Of Contents

http://github.com/yui/yuglify
http://developer.yahoo.com/yui/compressor/

Pipeline Documentation, Release 1.6.12

Warning: Don’t point to yuicompressor.jar directly, we expect to find a executable script.

YUI_CSS_ARGUMENTS

Additional arguments to use when compressing CSS.

Defaults to ''.

YUI_JS_ARGUMENTS

Additional arguments to use when compressing JavaScript.

Defaults to ''.

1.4.3 Closure Compiler compressor

The Closure compressor uses Google Closure Compiler to compress javascripts.

To use it add this to your PIPELINE['JS_COMPRESSOR']

PIPELINE['JS_COMPRESSOR'] = 'pipeline.compressors.closure.ClosureCompressor'

CLOSURE_BINARY

Command line to execute for the Closure Compiler program. You will most likely change this to the
location of closure on your system.

Default to '/usr/bin/env closure'

Warning: Don’t point to compiler.jar directly, we expect to find a executable script.

CLOSURE_ARGUMENTS

Additional arguments to use when closure is called.

Default to ''

1.4.4 UglifyJS compressor

The UglifyJS compressor uses UglifyJS to compress javascripts.

To use it add this to your PIPELINE['JS_COMPRESSOR']

PIPELINE['JS_COMPRESSOR'] = 'pipeline.compressors.uglifyjs.UglifyJSCompressor'

1.4. Compressors 13

http://code.google.com/closure/compiler/
https://github.com/mishoo/UglifyJS2/

Pipeline Documentation, Release 1.6.12

UGLIFYJS_BINARY

Command line to execute for the UglifyJS program. You will most likely change this to the location of
uglifyjs on your system.

Defaults to '/usr/bin/env uglifyjs'.

UGLIFYJS_ARGUMENTS

Additional arguments to use when uglifyjs is called.

Default to ''

1.4.5 JSMin compressor

The jsmin compressor uses Douglas Crockford jsmin tool to compress javascripts.

To use it add this to your PIPELINE['JS_COMPRESSOR']

PIPELINE['JS_COMPRESSOR'] = 'pipeline.compressors.jsmin.JSMinCompressor'

Install the jsmin library with your favorite Python package manager

pip install jsmin

1.4.6 SlimIt compressor

The slimit compressor uses SlimIt to compress javascripts.

To use it add this to your PIPELINE['JS_COMPRESSOR']

PIPELINE['JS_COMPRESSOR'] = 'pipeline.compressors.slimit.SlimItCompressor'

Install the slimit library with your favorite Python package manager

pip install slimit

1.4.7 CSSTidy compressor

The CSStidy compressor uses CSStidy to compress stylesheets.

To us it for your stylesheets add this to your PIPELINE['CSS_COMPRESSOR']

PIPELINE['CSS_COMPRESSOR'] = 'pipeline.compressors.csstidy.CSSTidyCompressor'

CSSTIDY_BINARY

Command line to execute for csstidy program. You will most likely change this to the location of csstidy
on your system.

Defaults to '/usr/bin/env csstidy'

14 Chapter 1. Table Of Contents

https://slimit.readthedocs.io
http://csstidy.sourceforge.net/

Pipeline Documentation, Release 1.6.12

CSSTIDY_ARGUMENTS

Additional arguments to use when csstidy is called.

Default to '--template=highest'

1.4.8 CSSMin compressor

The cssmin compressor uses the cssmin command to compress stylesheets. To use it, add this to your
PIPELINE['CSS_COMPRESSOR']

PIPELINE['CSS_COMPRESSOR'] = 'pipeline.compressors.cssmin.CSSMinCompressor'

CSSMIN_BINARY

Command line to execute for cssmin program. You will most likely change this to the location of cssmin
on your system.

Defaults to '/usr/bin/env cssmin'

CSSMIN_ARGUMENTS

Additional arguments to use when cssmin is called.

Default to ''

1.4.9 No-Op Compressors

The No-Op compressor don’t perform any operation, when used, only concatenation occurs. This is useful for debug-
ging faulty concatenation due to poorly written javascript and other errors.

To use it, add this to your settings

PIPELINE['CSS_COMPRESSOR'] = 'pipeline.compressors.NoopCompressor'
PIPELINE['JS_COMPRESSOR'] = 'pipeline.compressors.NoopCompressor'

1.4.10 Write your own compressor class

You can write your own compressor class, for example if you want to implement other types of compressors.

To do so, you just have to create a class that inherits from pipeline.compressors.CompressorBase and
implements compress_css and/or a compress_js when needed.

Finally, add it to PIPELINE['CSS_COMPRESSOR'] or PIPELINE['JS_COMPRESSOR'] settings (see Config-
uration for more information).

Example

A custom compressor for an imaginary compressor called jam

1.4. Compressors 15

https://github.com/jbleuzen/node-cssmin

Pipeline Documentation, Release 1.6.12

from pipeline.compressors import CompressorBase

class JamCompressor(CompressorBase):
def compress_js(self, js):
return jam.compress(js)

def compress_css(self, css):
return jam.compress(css)

Add it to your settings

PIPELINE['CSS_COMPRESSOR'] = 'jam.compressors.JamCompressor'
PIPELINE['JS_COMPRESSOR'] = 'jam.compressors.JamCompressor'

1.5 Compilers

1.5.1 Coffee Script compiler

The Coffee Script compiler uses Coffee Script to compile your javascript.

To use it add this to your PIPELINE['COMPILERS']

PIPELINE['COMPILERS'] = (
'pipeline.compilers.coffee.CoffeeScriptCompiler',

)

COFFEE_SCRIPT_BINARY

Command line to execute for coffee program. You will most likely change this to the location of coffee
on your system.

Defaults to '/usr/bin/env coffee'.

COFFEE_SCRIPT_ARGUMENTS

Additional arguments to use when coffee is called.

Defaults to ''.

1.5.2 Live Script compiler

The LiveScript compiler uses LiveScript to compile your javascript.

To use it add this to your PIPELINE['COMPILERS']

PIPELINE['COMPILERS'] = (
'pipeline.compilers.livescript.LiveScriptCompiler',

)

16 Chapter 1. Table Of Contents

http://jashkenas.github.com/coffeescript/
https://github.com/gkz/LiveScript

Pipeline Documentation, Release 1.6.12

LIVE_SCRIPT_BINARY

Command line to execute for LiveScript program. You will most likely change this to the location of lsc
on your system.

Defaults to '/usr/bin/env lsc'.

LIVE_SCRIPT_ARGUMENTS

Additional arguments to use when lsc is called.

Defaults to ''.

1.5.3 LESS compiler

The LESS compiler uses LESS to compile your stylesheets.

To use it add this to your PIPELINE['COMPILERS']

PIPELINE['COMPILERS'] = (
'pipeline.compilers.less.LessCompiler',

)

LESS_BINARY

Command line to execute for lessc program. You will most likely change this to the location of lessc on
your system.

Defaults to '/usr/bin/env lessc'.

LESS_ARGUMENTS

Additional arguments to use when lessc is called.

Defaults to ''.

1.5.4 SASS compiler

The SASS compiler uses SASS to compile your stylesheets.

To use it add this to your PIPELINE['COMPILERS']

PIPELINE['COMPILERS'] = (
'pipeline.compilers.sass.SASSCompiler',

)

SASS_BINARY

Command line to execute for sass program. You will most likely change this to the location of sass on
your system.

Defaults to '/usr/bin/env sass'.

1.5. Compilers 17

http://lesscss.org/
http://sass-lang.com/

Pipeline Documentation, Release 1.6.12

SASS_ARGUMENTS

Additional arguments to use when sass is called.

Defaults to ''.

1.5.5 Stylus compiler

The Stylus compiler uses Stylus to compile your stylesheets.

To use it add this to your PIPELINE['COMPILERS']

PIPELINE['COMPILERS'] = (
'pipeline.compilers.stylus.StylusCompiler',

)

STYLUS_BINARY

Command line to execute for stylus program. You will most likely change this to the location of stylus on
your system.

Defaults to '/usr/bin/env stylus'.

STYLUS_ARGUMENTS

Additional arguments to use when stylus is called.

Defaults to ''.

1.5.6 ES6 compiler

The ES6 compiler uses Babel to convert ES6+ code into vanilla ES5.

Note that for files to be transpiled properly they must have the file extension .es6

To use it add this to your PIPELINE['COMPILERS']

PIPELINE['COMPILERS'] = (
'pipeline.compilers.es6.ES6Compiler',

)

BABEL_BINARY

Command line to execute for babel program. You will most likely change this to the location of babel on
your system.

Defaults to '/usr/bin/env babel'.

BABEL_ARGUMENTS

Additional arguments to use when babel is called.

Defaults to ''.

18 Chapter 1. Table Of Contents

http://learnboost.github.com/stylus/
https://babeljs.io

Pipeline Documentation, Release 1.6.12

1.5.7 Write your own compiler class

You can write your own compiler class, for example if you want to implement other types of compilers.

To do so, you just have to create a class that inherits from pipeline.compilers.CompilerBase and imple-
ments match_file and compile_file when needed.

Finally, specify it in the tuple of compilers PIPELINE['COMPILERS'] in the settings.

Example

A custom compiler for an imaginary compiler called jam

from pipeline.compilers import CompilerBase

class JamCompiler(CompilerBase):
output_extension = 'js'

def match_file(self, filename):
return filename.endswith('.jam')

def compile_file(self, infile, outfile, outdated=False, force=False):
if not outdated and not force:
return # No need to recompiled file

return jam.compile(infile, outfile)

1.5.8 3rd Party Compilers

Here is an (in)complete list of 3rd party compilers that integrate with django-pipeline

Compass (requires RubyGem)

Creator Mila Labs

Description Compass compiler for django-pipeline using the original Ruby gem.

Link https://github.com/mila-labs/django-pipeline-compass-rubygem

Compass (standalone)

Creator Vitaly Babiy

Description django-pipeline-compass is a compiler for django-pipeline. Making it really easy to use scss
and compass with out requiring the compass gem.

Link https://github.com/vbabiy/django-pipeline-compass

1.6 Javascript Templates

Pipeline allows you to use javascript templates along with your javascript views. To use your javascript templates, just
add them to your JAVASCRIPT group

1.6. Javascript Templates 19

https://github.com/mila-labs
https://github.com/vbabiy
https://github.com/jazzband/django-pipeline

Pipeline Documentation, Release 1.6.12

PIPELINE['JAVASCRIPT'] = {
'application': {
'source_filenames': (

'js/application.js',
'js/templates/**/*.jst',

),
'output_filename': 'js/application.js'

}
}

For example, if you have the following template js/templates/photo/detail.jst

<div class="photo">
<img src="<%= src %>" />
<div class="caption">
<%= caption %>

</div>
</div>

It will be available from your javascript code via window.JST

JST.photo_detail({ src:"images/baby-panda.jpg", caption:"A baby panda is born" });

1.6.1 Configuration

Template function

By default, Pipeline uses a variant of Micro Templating to compile the templates, but you can choose your preferred
JavaScript templating engine by changing PIPELINE['TEMPLATE_FUNC']

PIPELINE['TEMPLATE_FUNC'] = 'template'

Template namespace

Your templates are made available in a top-level object, by default window.JST, but you can choose your own via
PIPELINE['TEMPLATE_NAMESPACE']

PIPELINE['TEMPLATE_NAMESPACE'] = 'window.Template'

Template extension

Templates are detected by their extension, by default .jst, but you can use your own extension via
PIPELINE['TEMPLATE_EXT']

PIPELINE['TEMPLATE_EXT'] = '.mustache'

Template separator

Templates identifier are built using a replacement for directory separator, by default _, but you specify your own
separator via PIPELINE['TEMPLATE_SEPARATOR']

20 Chapter 1. Table Of Contents

http://ejohn.org/blog/javascript-micro-templating/

Pipeline Documentation, Release 1.6.12

PIPELINE['TEMPLATE_SEPARATOR'] = '/'

1.6.2 Using it with your favorite template library

Mustache

To use it with Mustache you will need some extra javascript

Mustache.template = function(templateString) {
return function() {
if (arguments.length < 1) {

return templateString;
} else {

return Mustache.to_html(templateString, arguments[0], arguments[1]);
}

};
};

And use these settings

PIPELINE['TEMPLATE_EXT'] = '.mustache'
PIPELINE['TEMPLATE_FUNC'] = 'Mustache.template'

Handlebars

To use it with Handlebars, use the following settings

PIPELINE['TEMPLATE_EXT'] = '.handlebars'
PIPELINE['TEMPLATE_FUNC'] = 'Handlebars.compile'
PIPELINE['TEMPLATE_NAMESPACE'] = 'Handlebars.templates'

Ember.js + Handlebars

To use it with Ember.js, use the following settings

PIPELINE['TEMPLATE_EXT'] = '.handlebars'
PIPELINE['TEMPLATE_FUNC'] = 'Ember.Handlebars.compile'
PIPELINE['TEMPLATE_NAMESPACE'] = 'window.Ember.TEMPLATES'
PIPELINE['TEMPLATE_SEPARATOR'] = '/'

Prototype

To use it with Prototype, just setup your PIPELINE['TEMPLATE_FUNC']

PIPELINE['TEMPLATE_FUNC'] = 'new Template'

1.6. Javascript Templates 21

https://github.com/janl/mustache.js
http://handlebarsjs.com/
http://emberjs.com/
http://www.prototypejs.org/

Pipeline Documentation, Release 1.6.12

1.7 Storages

1.7.1 Using with staticfiles

Pipeline is providing a storage for staticfiles app, to use it configure STATICFILES_STORAGE like so

STATICFILES_STORAGE = 'pipeline.storage.PipelineStorage'

And if you want versioning use

STATICFILES_STORAGE = 'pipeline.storage.PipelineCachedStorage'

There is also non-packing storage available, that allows you to run collectstatic command without packaging
your assets. Useful for production when you don’t want to run compressor or compilers

STATICFILES_STORAGE = 'pipeline.storage.NonPackagingPipelineStorage'

Also available if you want versioning

STATICFILES_STORAGE = 'pipeline.storage.NonPackagingPipelineCachedStorage'

If you use staticfiles with DEBUG = False (i.e. for integration tests with Selenium) you should install the finder
that allows staticfiles to locate your outputted assets :

STATICFILES_FINDERS = (
'django.contrib.staticfiles.finders.FileSystemFinder',
'django.contrib.staticfiles.finders.AppDirectoriesFinder',
'pipeline.finders.PipelineFinder',

)

If you use PipelineCachedStorage you may also like the CachedFileFinder, which allows you to use
integration tests with cached file URLs.

If you want to exclude Pipelinable content from your collected static files, you can also use Pipeline’s
FileSystemFinder and AppDirectoriesFinder. These finders will also exclude unwanted content like
READMEs, tests and examples, which are particularly useful if you’re collecting content from a tool like Bower.

STATICFILES_FINDERS = (
'pipeline.finders.FileSystemFinder',
'pipeline.finders.AppDirectoriesFinder',
'pipeline.finders.CachedFileFinder',
'pipeline.finders.PipelineFinder',

)

1.7.2 GZIP compression

Pipeline can also creates a gzipped version of your collected static files, so that you can avoid compressing them on
the fly.

STATICFILES_STORAGE = 'your.app.GZIPCachedStorage'

The storage need to inherit from GZIPMixin:

22 Chapter 1. Table Of Contents

https://docs.djangoproject.com/en/dev/howto/static-files/
http://docs.seleniumhq.org/

Pipeline Documentation, Release 1.6.12

from django.contrib.staticfiles.storage import CachedStaticFilesStorage

from pipeline.storage import GZIPMixin

class GZIPCachedStorage(GZIPMixin, CachedStaticFilesStorage):
pass

1.7.3 Using with other storages

You can also use your own custom storage, for example, if you want to use S3 for your assets :

STATICFILES_STORAGE = 'your.app.S3PipelineManifestStorage'

Your storage only needs to inherit from PipelineMixin and ManifestFilesMixin or
CachedFilesMixin.

In Django 1.7+ you should use ManifestFilesMixin unless you don’t have access to the local filesystem in which case
you should use CachedFilesMixin.

from django.contrib.staticfiles.storage import CachedFilesMixin, ManifestFilesMixin

from pipeline.storage import PipelineMixin

from storages.backends.s3boto import S3BotoStorage

class S3PipelineManifestStorage(PipelineMixin, ManifestFilesMixin, S3BotoStorage):
pass

class S3PipelineCachedStorage(PipelineMixin, CachedFilesMixin, S3BotoStorage):
pass

1.7.4 Using Pipeline with Bower

Bower is a package manager for the web that allows you to easily include frontend components with named versions.
Integrating Bower with Pipeline is straightforward.

Add your Bower directory to your STATICFILES_DIRS :

STATICFILES_DIRS = (
os.path.join(os.path.dirname(__file__), '..', 'bower_components'),

)

Then process the relevant content through Pipeline :

PIPELINE['JAVASCRIPT'] = {
'components': {
'source_filenames': (

'jquery/jquery.js',
you can choose to be specific to reduce your payload
'jquery-ui/ui/*.js',

),
'output_filename': 'js/components.js',

},
}

1.7. Storages 23

https://docs.djangoproject.com/en/1.7/ref/contrib/staticfiles/#manifeststaticfilesstorage
http://bower.io/

Pipeline Documentation, Release 1.6.12

pipeline.finders.FileSystemFinder will help you by excluding much of the extra content that Bower in-
cludes with its components, such as READMEs, tests and examples, while still including images, fonts, CSS fragments
etc.

1.8 Signals

List of all signals sent by pipeline.

1.8.1 css_compressed

pipeline.signals.css_compressed

Whenever a css package is compressed, this signal is sent after the compression.

Arguments sent with this signal :

sender The Packager class that compressed the group.

package The package actually compressed.

1.8.2 js_compressed

pipeline.signals.js_compressed

Whenever a js package is compressed, this signal is sent after the compression.

Arguments sent with this signal :

sender The Packager class that compressed the group.

package The package actually compressed.

1.9 Sites using Pipeline

The following sites are a partial list of people using Pipeline.

Are you using pipeline and not being in this list? Drop us a line.

1.9.1 20 Minutes

For their internal tools: http://www.20minutes.fr

1.9.2 Borsala

Borsala is the social investment plaform. You can follow stock markets that are traded in Turkey: http://borsala.com

24 Chapter 1. Table Of Contents

http://www.20minutes.fr
http://borsala.com

Pipeline Documentation, Release 1.6.12

1.9.3 Croisé dans le Métro

For their main and mobile website:

• http://www.croisedanslemetro.com

• http://m.croisedanslemetro.com

1.9.4 The Molly Project

Molly is a framework for the rapid development of information and service portals targeted at mobile internet devices:
https://github.com/mollyproject/mollyproject

It powers the University of Oxford’s mobile portal: http://m.ox.ac.uk/

1.9.5 Mozilla

• mozilla.org (https://github.com/mozilla/bedrock)

• Mozilla Developer Network (https://github.com/mozilla/kuma)

1.9.6 Novapost

For PeopleDoc suite products: http://www.people-doc.com/

1.9.7 Sophicware

Sophicware offers web hosting and DevOps as a service: http://sophicware.com

1.9.8 Ulule

For their main and forum website:

• http://www.ulule.com

• http://vox.ulule.com

1.9. Sites using Pipeline 25

http://www.croisedanslemetro.com
http://m.croisedanslemetro.com
https://github.com/mollyproject/mollyproject
http://m.ox.ac.uk/
https://mozilla.org
https://github.com/mozilla/bedrock
https://developer.mozilla.org
https://github.com/mozilla/kuma
http://www.people-doc.com/
http://sophicware.com
http://www.ulule.com
http://vox.ulule.com

Pipeline Documentation, Release 1.6.12

26 Chapter 1. Table Of Contents

CHAPTER 2

Indices and tables

• search

27

	Table Of Contents
	Installation
	Configuration
	Usage
	Compressors
	Compilers
	Javascript Templates
	Storages
	Signals
	Sites using Pipeline

	Indices and tables

